Induction of chondrogenesis in limb mesenchymal cultures by disruption of the actin cytoskeleton

نویسندگان

  • N C Zanetti
  • M Solursh
چکیده

Cell shape is known to influence the chondrogenic differentiation of cultured limb bud mesenchyme cells (Solursh, M., T. F. Linsenmayer, and K. L. Jensen, 1982, Dev. Biol., 94: 259-264). To test whether specific cytoskeletal components mediate this influence of cell shape, we examined different cytoskeleton disrupting agents for their ability to affect chondrogenesis. Limb bud cells cultured at subconfluent densities on plastic substrata normally become flattened, contain numerous cytoplasmic microtubules and actin bundles, and do not undergo spontaneous chondrogenesis. If such cultures are treated with 2 micrograms/ml cytochalasin D during the initial 3-24 h in culture, the cells round up, lose their actin cables, and undergo chondrogenesis, as indicated by the production of immunologically detectable type II collagen and a pericellular Alcian blue staining matrix. Cytochalasin D also induces cartilage formation by high-density cultures of proximal limb bud cells, which normally become blocked in a protodifferentiated state. In addition, cytochalasin D was found to reverse the normal inhibition by fibronectin of chondrogenesis by proximal limb bud cells cultured in hydrated collagen gels. Agents that disrupt microtubules have no apparent effect on the shape or chondrogenic differentiation of limb bud mesenchymal cells. These results suggest an involvement of the actin cytoskeleton in controlling cell shape and chondrogenic differentiation of limb bud mesenchyme. Interactions of the actin cytoskeleton and extracellular matrix components may provide a regulatory mechanism for mesenchyme cell differentiation into cartilage or fibrous connective tissue in the developing limb.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Small Molecule-BIO Accelerates and Enhances Marrow-Derived Mesenchymal Stem Cell in Vitro Chondrogenesis

Background: Hyaline cartilage defects exhibit a major challenge in the field of orthopedic surgery owing to its limited repair capacity. On the other hand, mesenchymal stem cells (MSCs) are regarded as potent cells with a property of cartilage regeneration. We aimed to optimize marrow-derived MSC chondrogenic culture using a small bioactive molecule referred to as BIO. Methods: MSCs from the ma...

متن کامل

Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype.

Bone marrow stromal cells (MSC), which represent a population of multipotential mesenchymal stem cells, have been reported to undergo rapid and robust transformation into neuron-like phenotypes in vitro following treatment with chemical induction medium including dimethyl sulfoxide (DMSO; Woodbury et al. [2002] J. Neurosci. Res. 96:908). In this study, we confirmed the ability of cultured rat M...

متن کامل

In Vitro Study of the Protective Effects of Hydroalcholic Extract of Soybean against Impact of Oxidative Damage on Osteogenesis and Chondrogenesis of Mouse Limb Bud

Introduction: Oxidative stress has been implicated in the pathogenesis of various diseases affecting chondrogenesis or the function of articular cartilage. The purpose of the present study was to find the effect of soybean extract on reduction of detoriation effects of oxidativestress in embryonic chondrogenesis in vitro. Methods: In order to separate ectoderm from mesenchyme, the limb buds ...

متن کامل

Adhesion molecules in skeletogenesis: II. Neural cell adhesion molecules mediate precartilaginous mesenchymal condensations and enhance chondrogenesis.

Neural cell adhesion molecules (NCAM) was expressed transiently by mesenchymal cells in precartilaginous condensations of the embryonic chicken limb but was lost upon differentiation into cartilage. Consequently, NCAM was present in the periphery of the limb anlagen but was absent in the cartilaginous center of the growing limb. To determine NCAM function in limb bud chondrogenesis we incubated...

متن کامل

Which Culture System Is better for Chondrogenesis of Adipose-Derived Stem Cells ; Pellet or Micromass?

Background and Aims: The current study was conducted to compare the expression levels of collagen type Π and X during chondrogenesis of human adipose-derived mesenchymal stem cells (hADMSCs) pellet and micromass cultures.  Materials and Methods: Extracted hADMSCs were cultured until three passages and then transferred to pellet and micromass cultures in the experimental groups of day 7 and day...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 99  شماره 

صفحات  -

تاریخ انتشار 1984